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The selection of an appropriate control sample for use in association mapping requires serious deliberation. Un-
related controls are generally easy to collect, but the resulting analyses are susceptible to spurious association arising
from population stratification. Parental controls are popular, since triads comprising a case and two parents can
be used in analyses that are robust to this stratification. However, parental controls are often expensive and difficult
to collect. In some situations, studies may have both parental and unrelated controls available for analysis. For
example, a candidate-gene study may analyze triads but may have an additional sample of unrelated controls for
examination of background linkage disequilibrium in genomic regions. Also, studies may collect a sample of triads
to confirm results initially found using a traditional case-control study. Initial association studies also may collect
each type of control, to provide insurance against the weaknesses of the other type. In these situations, resulting
samples will consist of some triads, some unrelated controls, and, possibly, some unrelated cases. Rather than
analyze the triads and unrelated subjects separately, we present a likelihood-based approach for combining their
information in a single combined association analysis. Our approach allows for joint analysis of data from both
triad and case-control study designs. Simulations indicate that our proposed approach is more powerful than
association tests that are based on each separate sample. Our approach also allows for flexible modeling and
estimation of allele effects, as well as for missing parental data. We illustrate the usefulness of our approach using
SNP data from a candidate-gene study of psoriasis.

Introduction

With the recent availability of high-density maps of
SNPs, association studies are increasingly popular
choices for identifying genetic variants that influence dis-
ease. Such studies rely on the concept of linkage dis-
equilibrium (LD)—that is, the statistical association of
alleles at two tightly linked loci (here, a SNP and a dis-
ease-influencing gene) in a population. The tight linkage
required typically exists over short distances, although
such distances can be variable (Abecasis et al. 2001).
Nevertheless, identification of SNPs in LD with disease
susceptibility variants should narrow the location of a
disease-influencing gene and should facilitate positional
cloning efforts.

Statistical methods for testing association between
SNPs and disease (reviewed by Thomas [2004]) gen-
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erally consist of a comparison of SNP alleles or geno-
types from a sample of affected cases with those from
an appropriate sample of unaffected controls. One com-
mon choice of controls is a collection of unrelated sub-
jects. In this situation, one can test for association by
comparing the SNP allele or genotype frequencies of
unrelated cases with those of controls by use of standard
goodness-of-fit statistics. An attractive feature of the use
of unrelated controls is that they generally are easy to
collect, which facilitates collection of a sufficient num-
ber of participants to detect genes of small effect that
contribute to the risk of complex diseases.

A major issue regarding the use of unrelated cases
and controls in association models is that one cannot
distinguish valid association due to linkage from spu-
rious association due to confounding effects. One of the
discussed confounders in genetic association studies is
population stratification, which occurs if the population
from which the cases and controls were sampled con-
sists of latent subpopulations, each with different SNP
allele frequencies and risks of disease. A spurious as-
sociation due to this confounding effect will occur for
any SNP allele that is at an elevated frequency in the
subpopulation with the greatest disease prevalence. Ex-
amples of this type of confounding have been discussed
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in case-control studies of diabetes (Knowler et al. 1988)
and alcoholism (Gelernter et al. 1993). If hidden pop-
ulation substructure exists, one can correct the bias in
statistical tests by using genotype information from un-
linked markers (Devlin and Roeder 1999; Pritchard et
al. 2000; Satten et al. 2001). However, the number of
unlinked SNPs that is needed to properly correct for
population stratification is uncertain.

To avoid spurious association from population strat-
ification, Falk and Rubinstein (1987) recommended col-
lecting the parents of each case subject and using the
nontransmitted parental alleles as a control sample. In
doing this, the cases and controls are matched in genetic
ancestry and are therefore robust to population strati-
fication. Using this idea, Spielman et al. (1993) con-
structed a joint test of linkage and association, called
the “transmission/disequilibrium test” (TDT), that at-
tempts to identify preferential transmission of alleles
from parent to affected child within different triads
(comprising an affected child plus two parents) by use
of a McNemar statistic. As a generalization of the TDT,
Schaid and Sommer (1993, 1994) developed a likeli-
hood procedure for triads, called the “conditional on
parental genotypes” (CPG) approach, that models the
probability of an affected offspring’s genotype con-
ditional on parental genotypes as a function of the ge-
notype relative risks (RRs) of the offspring. This CPG
likelihood approach allows flexible modeling of the ge-
notype RRs, which can be estimated using standard
maximum-likelihood procedures.

By being robust to population stratification, parental
controls are ideal choices for association modeling.
However, the sampling of parental controls is often
more difficult and more expensive than that of unrelated
controls, since studies must identify and sample the two
parents of an affected subject. Many parents may not
be available for analysis, because of death, refusal to
participate, or false paternity. Statistical methods exist
for handling triads with missing parental data (Sun et
al. 1999; Weinberg 1999; Rabinowitz 2002; Allen et al.
2003), but, even if parental controls are properly han-
dled, the difficulty in sampling them may result in sam-
ples of insufficient size for detection of genes that have
small effects on disease risk.

The choice to use either unrelated or parental controls
for association analysis requires serious deliberation.
Situations may arise in which a study collects both pa-
rental and unrelated controls for association analysis,
rather than choose one specific type of control. There
are different reasons for using such a sampling design.
For example, in a candidate-gene study of disease, one
might use the triads to test for LD between certain SNPs
and disease while using the unrelated controls to in-
vestigate patterns of LD between the SNPs, in an effort
to reduce potential confounding. Veal et al. (2002) used

such a strategy in a study that investigated the influence
of candidate genes within the major histocompatibility
complex (MHC) on susceptibility to psoriasis. Studies
might also collect a sample of triads to confirm previous
association results that were found using a sample of
unrelated cases and controls (Martin and Kaplan 2000),
since significant replication by use of the triad sample
ensures that significant association results from the un-
related sample are due to LD and not stratification.
Studies might also sample both parental and unrelated
controls for association analysis, since each set of con-
trols provides insurance against the weaknesses of the
other set. The parental controls would provide insur-
ance if the use of unrelated controls yields an associa-
tion-test bias due to stratification, whereas the unrelated
controls would provide insurance if the number of sam-
pled parental controls among the triads falls below an-
ticipated numbers, which could lead to underpowered
TDTs and CPG tests.

In such situations, the overall sample for association
analysis will consist of triads, unrelated controls, and,
perhaps, unrelated cases. Recently, Nagelkerke et al.
(2004) proposed a joint analysis of such data by use of
a likelihood-based approach and showed that the re-
sulting analyses yield an increase in power, compared
with methods that analyze triads and unrelated subjects
separately. Nagelkerke et al. (2004) also provided ad
hoc procedures to determine whether triad data and
unrelated data can be safely combined. This is impor-
tant because triad, control, and case data could differ
by confounding factors (such as population stratifi-
cation) that could potentially lead to biased inference
if the data are naively combined.

Nagelkerke et al. (2004) advocated an approximate
analysis that, although having the advantage of being
easily conducted by use of standard logistic-regression
software, makes the strong assumptions of Hardy-
Weinberg equilibrium (HWE), random mating, and a
multiplicative model of allele effect on disease. Here,
we advocate a likelihood-based approach that modifies
the approach of Nagelkerke et al., to allow for more-
flexible modeling of allele effects and less-restrictive as-
sumptions about the distribution of parental mating
types and genotypes. We show here that the power gains
achieved by Nagelkerke et al. (2004) under the as-
sumption of HWE and random mating are preserved
when a more general parental mating-type distribution
is used, whereas violation of these assumptions in the
approximate procedure of Nagelkerke et al. can lead to
biased inference. In addition, we also provide formal
tests to determine whether data types (triads, unrelated
controls, and unrelated cases) can be combined; these
tests do not require genotyping at additional loci. Fi-
nally, we also consider triad samples with missing
parental data. Here, a new subtlety arises: whereas
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likelihood-based analyses of incomplete triad data
(Weinberg 1999) are robust to population stratification
because a saturated model is fit to parental genotypes,
joint analysis of incomplete triads with unrelated con-
trols can yield biased estimates of genotype RRs if pop-
ulation stratification exists between the two samples.
We discuss how to protect against this bias as part of
our procedures for testing whether data types should
be combined.

In subsequent sections, we develop the likelihood ap-
proach of Nagelkerke et al. (2004) and describe our
modifications to their estimation procedures and statis-
tical tests for detection of association. We also describe
our formal procedures for testing whether data types
may be combined and further describe our approach
for accommodating incomplete triad data. We evaluate
the performance of our approach, using both simulated
data and real data from a study of psoriasis.

Material and Methods

Assumptions and Notation

We assume a sample of triads, unrelated controls, and
unrelated cases that are all genotyped at a SNP of in-
terest. We denote the two alleles of the SNP as A and
a. For a given triad, we define as theG p (G ,G )p p,1 p,2

unordered genotypes of the two parents and define Go

as the genotype of the offspring. We define as theGu

genotype of an unrelated subject. We code each genotype
to equal the number of copies of A carried by the subject
of interest. Finally, we define and as disease out-D Do u

come variables (1 p affected and 0 p unaffected) for
a triad offspring and unrelated subject, respectively. For
triad offspring, we assume on the basis of sam-D p 1o

pling design. For unrelated subjects, equals 1 for af-Du

fected cases and 0 for unaffected controls.

Likelihood Derivation

The combined association procedures that we con-
sider are based on the likelihood proposed by Nagel-
kerke et al. (2004) for combining data on parental
genotypes , offspring genotypes , and unrelated ge-G Gp o

notypes conditional on the disease outcomes of theGu

offspring and of the unrelated subjects . AssumingD Do u

a sample of triads, J unrelated controls, and K unrelatedI
cases, we can write this likelihood as

I J

L p P(G ,G FD p 1) # P(G FD p 0)� �pi oi oi uj uj
ip1 jp1

K

# P(G FD p 1) , (1)� uk uk
kp1

where i indexes the triad probabilities, j indexes the con-
trol probabilities, and k indexes the case probabilities.

The construction of L requires specification of the
three probabilities in equation (1). We first specify the
probability of the triad genotypes in .P(G ,G FD p 1)p o o

We rewrite this probability as P (G ,G FD p 1) pp o o

. Here,P(G FG ,D p 1) # P(G FD p 1) P(G FG ,D po p o p o o p o

denotes the probability of an affected offspring’s ge-1)
notype conditional on parental genotypes and corre-
sponds to the probability in the CPG approach described
by Schaid and Sommer (1993). Define the RR as

P(D p 1FG p g)o o
w p , g p 1, 2 .g P(D p 1FG p 0)o o

Schaid and Sommer (1993) showed that, if offspring
disease risk is independent of parental genotype given
offspring genotype, then

P(G p gFG p g , D p 1)o p p o

w P(G p gFG p g )g o p pp ,∗�w P(G p g FG p g )∗g o p p∗g

where is the Mendelian proportionP(G p gFG p g )o p p

of offspring with g copies of allele A, given parental
mating type . In table 1, we showg P(G FG ,D p 1)p o p o

values for all possible triad genotype combinations
(Schaid and Sommer 1993).

To model the RR parameters, we could assume a gen-
eral model that allows for arbitrary values of andw1

. Alternatively, we could select nongeneral models forw2

the RR, including multiplicative ( and ),2w p w w p w1 2

additive ( and ), dominant (w p w w p 2w � 1 w p1 2 1

), and recessive ( and ) models.w p w w p 1 w p w2 1 2

Here, w denotes a scalar RR parameter to be estimated.
To complete the construction of inP(G ,G FD p 1)p o o

equation (1), we next specify , which is theP(G FD p 1)p o

probability of the parental genotypes in the triads. We
note that the frequency of among triads differs fromGp

that in the general population because of selective sam-
pling through affected offspring. However, we can eval-
uate this probability as

P(G p g FD p 1)p p o

�w P(G p gFG p g )P(G p g )g o p p p p
gp , (2)∗ ∗ ∗��w P(G p g FG p g )P(G p g )∗g o p p p p∗ ∗g gp

where and are as defined above. inw P(G FG ) P(G )g o p p

equation (2) denotes the frequency of the parental ge-
notypes in the general population. We calculate P(G )p

using the parental genotype distribution described by
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Table 1

Evaluation of P(G FG , D p 1)o p o

for a SNP

andG Gp o P(G FG , D p 1)o p o

:G p (2,2)p

G p 2o 1

G p 1o 0

G p 0o 0

:G p (2,1)p

G p 2o

w2

w � w1 2

G p 1o

w1

w � w1 2

G p 0o 0

:G p (2,0)p

G p 2o 0

G p 1o 1

G p 0o 0

:G p (1,1)p

G p 2o

w2

1 � 2w � w1 2

G p 1o

2w1

1 � 2w � w1 2

G p 0o

1
1 � 2w � w1 2

:G p (1,0)p

G p 2o 0

G p 1o

w1

1 � w1

G p 0o

1
1 � w1

:G p (0,0)p

G p 2o 0

G p 1o 0

G p 0o 1

NOTE.— denotesG p (G ,G )p p,1 p,2

unordered parental genotypes, and
denotes offspring genotype.Go

Each subject’s genotype equals the
number of copies of high-risk allele
A that the individual possesses.

Weinberg et al. (1998). For a SNP, takes one of sixGp

possible mating types in the set {(2,2),(2,1),(2,0),(1,1),
(1,0),(0,0)}. Define as the probability of the lth matingml

type in the population. As shown in table(l p 1, … ,6)
2, for each mating type is then specifiedP(G FD p 1)p o

in terms of the RR parameters and and the mating-w w1 2

type parameters . Because the valuesm p (m ,m , … ,m )1 2 6

of m may be any positive values whose sum is 1, we
avoid assumptions of HWE or random mating among
the parents.

To incorporate unrelated controls in the combined
analysis, we make a rare-disease assumption such that

; hence, we can writeP(G FD p 0) ≈ P(G ) P(G FD pu u u u u

as the marginal probability of a single parent’s mating0)
on the basis of the probabilities given in table 2. In
particular, we have

m m2 3P(G p 2FD p 0) ≈ P(G p 2) p m � �u u p,1 1 2 2

m m2 5P(G p 1FD p 0) ≈ P(G p 1) p � m �u u p,1 42 2

m m3 5P(G p 0FD p 0) ≈ P(G p 0) p � � m (3)u u p,1 6 .2 2

Because the model for is saturated, fittingP(G )p

to triad data alone yields no addition-P(G ,G FD p 1)p o o

al information on and , compared with fittingw w1 2

. However, equation (3) shows that theP(G FG ,D p 1)o p o

inclusion of unrelated control data in equation (1) yields
additional information on the mating-type parameters
m. As a result, the addition of unrelated controls to the
triad data in equation (1) increases the efficiency of in-
ference on and . Further efficiency gains can bew w1 2

achieved by incorporating genotype data from unrelated
cases into the joint analysis. To do this, we again make
a rare-disease approximation such that we can model
the genotype probability of a case as

w P(G p g)g p,1P(G p gFD p 1) pu u ∗�w P(G p g )∗g p,1∗g

w P(G p gFD p 0)g u u≈ (4)∗�w P(G p g FD p 0)∗g u u∗g

Examination of this probability demonstrates that case
genotypes will provide additional information on ,w1

, and m.w2

Testing for Linkage and Association Between a SNP
and Disease

We can use L in equation (1) to estimate , , andw w1 2

m by using standard maximum-likelihood procedures.
We can also use L to construct likelihood-ratio (LR)
statistics for testing the null hypothesis of no linkage or
association between a SNP and disease. Testing this null
hypothesis, , corresponds to testing forH w p w p 10 1 2

a general RR model or to testing for a nongeneralw p 1
RR model. Under , the LR statistic asymptoticallyH0
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Table 2

Evaluation of for a SNPP(G FD p 1)p o

Gp P(G )p P(G FD p 1)p o

(2,2) m1

w m2 1

R

(2,1) m2

(w � w )m1 2 2

2R

(2,0) m3

w m1 3

R

(1,1) m4

(1 � 2w � w )m1 2 4

4R

(1,0) m5

(1 � w )m1 5

2R

(0,0) m6

m6

R

NOTE.—R p normalization factor.

follows either a distribution (for a general RR model)2x2

or a distribution (for a nongeneral RR model).2x1

Testing Whether Data Sources Can Be Combined

Before making inferences based on the sample, one
must first ensure that the data from triads, unrelated
controls, and unrelated cases can be safely combined.
Tests and estimators based on equation (1) are valid only
if triads, unrelated controls, and unrelated cases are sam-
pled from populations having the same allele frequen-
cies and RR parameters. For example, comparison of

in equation (3) with in equa-P(G FD p 0) P(G FD p 1)u u p o

tion (2) shows that additional information on andw1

is gained by comparing the triad parents with unre-w2

lated controls. However, this information is only valid
when the same mating-type parameters m describe both
samples. Suppose the true value of in the unrelatedm1

controls is smaller than the true value of the correspond-
ing parameter in the triad parents. The estimate of m1

in the parents will then be smaller than its true value,
which, as shown by the values for in tableP(G FD p 1)p o

2, will result in an inappropriate inflation of the value
of from the parental data. Similarly, comparison ofw2

in equation (3) with in equa-P(G FD p 0) P(G FD p 1)u u u u

tion (4) shows that additional information on andw1

is gained by comparing the cases with controls (whichw2

corresponds to a retrospective analysis of a case-control
study); again, this inference is valid only when the same
set of mating-type parameters m describe both samples.

The most direct test of whether data from unrelated
subjects can be safely combined with triad data would
be to test the equality of the mating-type distribution
(the parameters m) for each data source. Unfortunately,
the mating-type distribution is not identifiable from un-
related cases or controls without an assumption like
random mating. Furthermore, without an additional
HWE assumption, this approach would involve tests

with 11 df, which is a potential threat to efficiency. Thus,
in accordance with Nagelkerke et al. (2004), we test
whether the data from unrelated subjects may be com-
bined with the triad data by assessing whether the in-
formation on and obtained by combining the dataw w1 2

from triad parents and unrelated subjects is compatible
with the valid information on and obtained byw w1 2

comparing the transmitted alleles with untransmitted al-
leles in triads by use of the CPG approach. For this
reason, we rewrite likelihood equation (1) as

I

L p P(G FG ,D p 1; w ,w ,m)� oi pi oi 1 2
ip1

(p) (p)# P(G FD p 1; w ,w ,m)pi oi 1 2

J

# P(G FD p 0; m)� uj uj
jp1

K

(c) (c)# P(G FD p 1; w ,w ,m) , (5)� uk uk 1 2
kp1

where and are each initially treated as(p) (p) (c) (c)(w ,w ) (w ,w )1 2 1 2

a distinct set of RR parameters that corresponds to in-
formation on obtained by comparing the triad(w ,w )1 2

parents with controls and by comparing the cases with
controls, respectively. This approach offers some pro-
tection against the effect of population stratification that
may be introduced if genotype frequencies in the unre-
lated cases or controls do not match those of the pop-
ulation from which triads were sampled. We can test
whether data from triads and unrelated subjects may be
combined by testing the hypotheses about the equality
of , , and . If supported by the(p) (p) (c) (c)(w ,w ) (w ,w ) (w ,w )1 2 1 2 1 2

data, and can each be constrained to(p) (p) (c) (c)(w ,w ) (w ,w )1 2 1 2

equal , resulting in efficiency gains for estimators(w ,w )1 2

of the RR parameters.
We can easily test the hypotheses about the equality

of , , and by using LR statistics;(p) (p) (c) (c)(w ,w ) (w ,w ) (w ,w )1 2 1 2 1 2

score tests may also be constructed. We recommend first
testing , that . If this hypothesis is(p) (p) (p)H (w ,w ) p (w ,w )0 1 2 1 2

not rejected, then we set and test(p) (p)(w ,w ) p (w ,w )1 2 1 2

, that . We recommend this test-(c dp) (c) (c)H (w ,w ) p (w ,w )0 1 2 1 2

ing scheme because tests whether data from unre-(p)H0

lated controls can be safely combined with triad data;
if this is not possible, it is difficult to justify combining
the data from unrelated cases and triads. In the exam-
ples we looked at, it is possible to estimate by(w ,w )1 2

use of only triads and unrelated cases, but and(w ,w )1 2

cannot be separately estimated using such data.(c) (c)(w ,w )1 2

An alternative strategy is to directly test , that(p,c)H0

. If a general (i.e., 2 df)(p) (p) (c) (c)(w ,w ) p (w ,w ) p (w ,w )1 2 1 2 1 2

model for the RR parameters is used, then test statistics
for and each follow a distribution with 2(p) (c dp) 2H H x0 0

df, whereas the test statistic has a distribution(p,c) 2H x0
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with 4 df. If a nongeneral (i.e., 1 df) model for the RR
parameters is used (e.g., a multiplicative, dominant, or
recessive model) then the degrees of freedom are half
those in the general case.

These tests generalize the proposals of Nagelkerke et
al. (2004) in two ways. First, we recommend initially
testing whether the information on RR parameters from
the comparison of parents with unrelated controls can
be safely combined with the triad data and then sub-
sequently testing whether the information on the RR
parameters from the comparison of cases with controls
can be safely combined with the triad data. This is im-
portant because we may find that, for example, the un-
related controls may be combined with the triad data
but not with the unrelated cases. Second, we base our
inference on likelihood equation (5), which contrasts the
inferential procedure of Nagelkerke et al. (2004) that
looked for overlap in CIs for the separate RR parame-
ters, a procedure that is not recommended (Schenker and
Gentleman 2001). In addition, by using the likelihood
for inference, we can apply selection procedures, such
as the Akaike information criteria (AIC), Bayesian in-
formation criteria (BIC), or backwards selection to for-
malize hypothesis testing and model selection. Backward
selection can be used by starting with the richest possible
model and removing parameters after hypothesis test-
ing. For example, we could start with a general-risk
model and separate estimates for , , and(p) (p)(w ,w ) (w ,w )1 2 1 2

. We could then conduct tests for equality of the(c) (c)(w ,w )1 2

different sets of RR parameters, as well as tests of specific
genetic models (e.g., the multiplicative model). Under
the assumption that at least one hypothesis is rejected,
the appropriate parameters can be constrained (e.g.,

), and the model can be refit. We then(p) (p)[w ,w ] p [w ,w ]1 2 1 2

repeat this procedure until no additional hypotheses
about parameters can be rejected.

Incorporation of Missing Parental Data

A practical problem in using triads for association
analysis is that marker data for members of the triad
may be unavailable due to factors such as refusal to
participate, death, or false paternity. The unavailability
of such data results in incomplete triads, missing either
one or both parents (missing the triad offspring is also
possible but will not be considered further). Using the
terminology of Weinberg (1999), we refer to a triad miss-
ing one parent as a “dyad” and a triad missing both
parents as a “monad.”

Various methods have been developed for association
analysis of triads in the presence of dyads and monads.
Approaches include the analysis of only the complete
triad data or reconstruction of parental genotypes from
informative offspring genotypes. Schaid (2004) pro-
vides an excellent overview of these approaches and

their limitations. Here, we follow the approach of Wein-
berg (1999) to account for missing parental genotype
information. This approach corresponds to replacing

in like-(p) (p)P(G FG ,D p 1; w ,w ,m)P(G FD p 1; w ,w ,m)o p o 1 2 p o 1 2

lihood equation (5) with

P(G FG ,D p 1; w ,w ,m)� o p o 1 2
G �Sp

(p) (p)# P(G FD p 1; w ,w ,m) (6)p o 1 2

for dyads or monads, where the set S corresponds to all
parental genotypes consistent with the observed parental
genotype data. When only complete triads, dyads, and
monads are analyzed, this procedure is robust to pop-
ulation stratification, as long as a flexible (nonparamet-
ric) model for is chosen, becauseP(G FD p 1; w ,w ,m)p o 1 2

the m parameters are fit to the distribution of parental
genotypes. In combining equation (6) with data from
unrelated controls, however, the parameters m are es-
timated jointly with parental and control genotypes.
Hence, inference based on equations (6) and (3) may be
biased. For this reason, in tests for whether family-
based data can be safely combined with data from un-
related controls, we recommend replacing with(w ,w )1 2

in both terms of equation (6). In the appendix,(p) (p)(w ,w )1 2

we give an expectation-maximization (EM) algorithm
for evaluating the likelihood when equation (6) is used
for dyads and monads.

We wish to point out that we consider monads arising
from a sample of triads to be distinct from unrelated
cases arising from a case-control sample in analysis. If
we fail to make this distinction in the analysis, then we
implicitly assume that monads and unrelated cases come
from the same population, whereas, in fact, monads
were sampled in the family-based arm of the study.
Therefore, we treat monads—but not unrelated cases—
as having missing parental data. For a study design in
which all unrelated cases and triad data are collected
simultaneously through the same recruitment method
from the same population, monads could be treated as
unrelated cases, and there would be no need for a sep-
arate set of parameters in the analysis.(c) (c)(w ,w )1 2

Application to Psoriasis Data Set and Simulations

We applied our combined association test to a subset
of data from a genetic study of psoriasis described in
Veal et al. (2002). This candidate-gene study genotyped
59 SNPs found throughout the psoriasis susceptibility 1
locus (PSORS1), which is contained within the MHC
on chromosome 6p21. Using a collection of triads of
European ancestry, Veal et al. (2002) performed TDTs
on each of the 59 SNPs. To illustrate our likelihood
approach, we focus attention on the results for SNP
CDSN1243, which was found to be significantly asso-
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ciated with disease in the initial analysis of the study
( ).P ! .001

In addition to collecting the triads for association anal-
ysis, Veal et al. (2002) also collected an additional sam-
ple of unrelated controls of European ancestry for the
analysis of LD conservation along the MHC. Here, we
investigate whether incorporating the unrelated controls
into the analysis increases the evidence for association
between CDSN1243 and a psoriasis-influencing variant.
Our study sample consists of 149 triads (130 complete
triads, 17 dyads, and 2 monads) and 269 unrelated con-
trols. For this SNP, we constructed the likelihood equa-
tion (6) under additive, dominant, and recessive models
for the RR. We therefore present results in terms of the
previously defined scalar risk w, as well as the scalar risk

, which corresponds to information on w obtained(p)w

by comparing the genotypes of triad parents with those
of unrelated controls. For each likelihood, we imple-
mented the EM algorithm given in the appendix.

Using an LR statistic, we first treated w and as(p)w

separate parameters and tested hypothesis , that(p)H0

, to assess whether we could safely combine the(p)w p w

triads and controls for analysis. If we failed to reject
, then we maximized w from the triads and controls(p)H0

together and tested the null hypothesis of no linkage or
association. To determine the most likely mechanism of
genetic action, we calculated the AIC under each RR
model and chose as the best model the one with the
lowest AIC value (Akaike 1985).

Using the psoriasis study sample as a starting point,
we conducted additional simulations to investigate the
type I error and power of our combined association test
under the assumption of a sample of triads and unrelated
controls. Assuming the same number of triads and con-
trols as in the psoriasis data set, we simulated parental
and unrelated control information by using estimates of
m from the best model (based on the AIC) in the psoriasis
analyses. We varied the true value of w in a range from
1 (null) to 2.5 and varied the true RR model among
additive, dominant, and recessive mechanisms. To in-
vestigate the effect of missing parental data on results,
we varied the percentage of missing triad parents from
0% to 40%. To study power changes that occur when
controls are added to the analysis, we analyzed each data
set twice: once by using our combined association ap-
proach and once by using the CPG likelihood (which
ignores information from the unrelated controls). Each
result is based on 10,000 replicates of the data.

We performed two additional sets of simulations to
assess the power of the combined association test for
testing hypothesis (that ) when it is inap-(p) (p)H w p w0

propriate to combine triads and unrelated controls for
analysis. The first set of simulations corresponds to the
situation in which triads and controls come from com-
pletely different populations with different sets of mat-

ing-type frequencies. For the triads, we simulated ge-
notypes by using the estimates of m from the best model
(on the basis of the AIC) in the psoriasis analyses. How-
ever, for the controls, we simulated genotypes under
HWE that varied the frequency of the A and a alleles
among values that would make the sample unsuitable
to combine with the triads. For each data set, we then
tested to assess whether it was appropriate to com-(p)H0

bine the two samples. Each result is based on 10,000
replicates of the data.

The second set of simulations for testing corre-(p)H0

sponds to the situation in which population stratification
exists in the sample. For these simulations, we assumed
that we sampled triads and unrelated controls from two
discrete strata. We assumed the first stratum was of Eu-
ropean origin (like the psoriasis sample) and had the
CDSN1243 allele frequencies from the best model (on
the basis of the AIC) in the psoriasis analyses. We as-
sumed the second stratum was of Thai origin and had
CDSN1243 allele frequencies corresponding to those
found in a psoriasis study conducted by Romphruk et
al. (2003). For simplicity, we assumed that the CDSN1243
alleles were in HWE in both strata. We induced strati-
fication by sampling triads and controls in different pro-
portions from the two strata. We sampled controls in
equal proportions from the two strata but sampled triads
in unequal proportions. For each data set, we then tested

to assess whether it was appropriate to combine the(p)H0

triads and controls. Each result is based on 10,000 rep-
licates of the data.

We also investigated the type I error and power of our
combined association test if one were to jointly analyze
SNP data from both triad and case-control studies. We
again assumed a sample of 149 triads but now assumed
that half of the 269 unrelated subjects were cases and
the other half were controls. We varied the true value
of w in a range from 1 (null) to 2.5 and varied the true
RR model among additive, dominant, and recessive
mechanisms. To determine the power differences be-
tween our combined test and tests based on the separate
samples, we analyzed each data set three times: once by
using our combined association approach, once by using
the CPG likelihood (which ignores information from the
unrelated cases and controls), and once by using a 1-df
likelihood-based association test for unrelated subjects
(which ignores information from the triads). Each result
is based on 5,000 replicates of the data.

Results

Analysis of Psoriasis Data Set

Table 3 presents the results of the analyses of the as-
sociation of psoriasis and CDSN1243. We first tested
whether the triads and unrelated controls could be com-
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Table 3

Results from CDSN1243 Analysis of Psoriasis Data Set

ASSUMPTION

AND VALUE

MODEL

Additive Dominant Recessive

:(p)w ( w

Parameter estimate:
w 3.39 3.40 1.99

(p)w 3.07 5.04 3.82
m1 .047 .059 .034
m2 .281 .294 .257
m3 .097 .077 .151
m4 .180 .185 .176
m5 .309 .272 .337
m6 .086 .113 .045

AIC 1,149.15 1,157.36 1,161.07
P valuea .84 .57 .15

:(p)w p w

Parameter estimate:
w 3.26 3.90 2.41
m1 .046 .060 .042
m2 .279 .298 .290
m3 .097 .079 .132
m4 .180 .185 .180
m5 .310 .273 .309
m6 .088 .105 .047

AIC 1,147.18 1,155.6 1,161.13
Combined LR statistic 32.68 24.19 18.72
CPG LR statistic 21.92 14.94 10.18

a P values for hypothesis , that .(p) (p)H w p w0

bined safely in the combined association analysis. Mod-
eling w and as separate parameters, we constructed(p)w

an LR statistic under each RR model to test hypothesis
, that . P values for testing for additive,(p) (p) (p)H w p w H0 0

dominant, and recessive models were .84, .57, and .15,
respectively. These results suggested that it was appro-
priate to let and thereby safely combine the data(p)w p w

from the triads and unrelated controls within the com-
bined association analysis.

The lower portion of table 3 shows results obtained
by use of both our combined association analysis that
used the triads and unrelated controls and the CPG ap-
proach that used triads only. Under all three models
considered, results found using both methods suggest
that CDSN1243 is significantly associated with a pso-
riasis-influencing variant that has a large effect on the
disease (range of w estimates, 2.41–3.90). Under an ad-
ditive model, the P value of the combined test was 1.08
# 10�8, whereas the P value for the CPG approach was
2.84 # 10�6. Under a dominant model, the combined
P value was 8.72 # 10�7, whereas the CPG P value was
1.10 # 10�4. Under a recessive model, the combined P
value was 1.51 x 10�5, whereas the CPG P value was
1.41 # 10�3. These results suggest that incorporating
the unrelated controls into the analysis increases our

ability to detect association. On the basis of the AIC
values, we chose the additive model with the assump-
tion as the best model for the analysis of(p)w p w

CDSN1243. Note that the selected model is the same
as that obtained by picking the model with lowest AIC
value among all genetic models in which and(p)w p w

all genetic models in which w and are estimated(p)w

separately.

Power Comparisons: Triads and Unrelated Controls

Figure 1 presents power curves at for thea p 0.05
combined association test and the CPG approach under
the assumption of a sample of 149 complete triads and
269 unrelated controls. Under the null model of w p

, the type I error rates for both methods appeared1.0
appropriate at . For , the results showa p 0.05 w 1 1.0
that our combined association test has improved power
to detect association, relative to the CPG approach,
across all three model types considered for analysis. In
general, we observed the largest increase in power for
additive models (e.g., from 0.53 to 0.73 for ),w p 1.5
followed by dominant (from 0.32 to 0.43) and recessive
models (from 0.42 to 0.51).

The power figures for the combined association test
in figure 1 assume no missing parental data in the triads.
Such missing parental data could potentially affect the
power of our combined association analysis. Figure 2
plots the estimated power of our combined association
test for different models with at , withw p 1.5 a p 0.05
the percentage of missing parental data in the range 0%–
40%. These simulation results suggest that using like-
lihood equation (6) for monads and dyads can recover
much of the power that would be lost if we were to
exclude data from these incomplete triads from the anal-
ysis. For an additive model, the power only decreases
from 0.73, for complete data, to 0.72, for data with
40% of parental data missing. We find a similar power
difference for dominant models. For recessive models,
the reduction in power for missing data was greater than
that for the other models, but still only decreased from
0.51, for complete data, to 0.47, for data with 40% of
parental data missing. These results suggest that missing
parental data does not seriously impact the power of
our combined association analysis.

We next investigated the power of our combined as-
sociation test as a function of the number of controls
used in the analysis. We simulated data under the as-
sumption of 149 complete triads but varied the number
of controls from 0 to 400. Figure 3 shows the power
results at for an additive model witha p 0.05 w p

. The figure shows that the power increases from1.5
0.53, when there are no controls, to 0.76, when there
are 300 controls. However, the figure also shows that
the power appears to plateau for samples with 1300



Figure 1 Power at of the combined association test (solid line) and the CPG approach (dashed line) under the assumption ofa p 0.05
149 triads and 269 unrelated controls. Power results are based on 10,000 replicates of data simulated using the estimated mating types from
the psoriasis study given in table 3.

Figure 2 Power at of the combined association test with missing parental data. Power results are based on 10,000 replicatesa p 0.05
of data simulated using the estimated mating types from the psoriasis study given in table 3, with the assumption .w p 1.5
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controls. For 400 controls, the power was 0.77. When
we simulated and analyzed data sets with 800 controls,
the power increased to only 0.80. Since controls provide
information about m only and not RRs, they fail to pro-
vide additional power to detect association once the mat-
ing-type frequencies are well estimated. Therefore, we
expect the power to plateau once we incorporate enough
controls in the combined association analysis to accu-
rately estimate m in the triads.

We also investigated the power of our combined as-
sociation test as a function of the number of triads used
in the analysis. We simulated data under the assumption
of 269 unrelated controls but varied the number of triads
from 50 to 350. Figure 4 shows the power results for
an additive model with when . Thew p 1.5 a p 0.05
power of our combined association test increased from
0.39, for 50 triads, to 0.95, for 350 triads. Our test also
appears to be more powerful than the CPG approach,
for all triad analyses that we considered. We also failed
to notice any plateau in the power to detect association
for either method, which we expected because triads
provide information about both RRs and mating-type
frequencies. Therefore, we expect the power of both the
combined association test and the CPG approach to in-
crease with an increasing number of triads.

We next assessed the power of the combined associ-
ation test for testing hypothesis (that ) in(p) (p)H w p w0

the situations for which it is inappropriate to combine
data from triads and unrelated controls. We first con-
sidered the situation in which the triads and controls
come from different populations with different mating-
type frequencies. We simulated data for 149 triads on
the basis of the mating-type frequencies from the pso-
riasis analysis. We then simulated data for 269 unrelated
controls under HWE. If the controls come from the same
population as the triad parents, the estimated frequency
of A would be 0.477. We therefore performed simula-
tions using this assumed frequency of A to investigate
the type I error rate for testing . To investigate the(p)H0

power to reject under the alternative, we considered(p)H0

additional simulations that varied the frequency of the
A allele in a range of 0.30–0.70.

Figure 5A shows the power to reject at(p)H a p0

, under the assumption of an additive model with0.05
. When the frequency of A is 0.477, our com-w p 1.0

bined association test has appropriate type I error. Under
alternative models, the power to reject increases(p)H0

steadily with an increase in the magnitude between the
assumed frequency and the null frequency of 0.477. We
have 180% power to reject when the frequency of(p)H0

the A allele is either !0.37 or 10.58.
Figure 5B shows the impact on RR estimates that

occurs when allele-frequency differences exist between
the populations from which the triad parents and un-
related controls are sampled. When w and are esti-(p)w

mated as separate parameters under an additive model
with , one can see that the former parameter isw p 1.0
unbiased across all allele frequencies considered, which
is expected, since this parameter estimate comes only
from the CPG-based component of our likelihood. On
the other hand, estimates of can be quite biased. We(p)w

found an upward bias as the frequency of A decreases
from the null frequency (0.477) and found a downward
bias when the frequency increases from the null fre-
quency. The situation of upward bias appears more se-
vere, although we note that, under an additive model,
w has a lower bound of 0.50. Figure 5B also shows mean
RR estimates if one naively combines the triad and con-
trol data (letting ) when allele-frequency differ-(p)w p w

ences occur between the two samples. When substantial
allele-frequency differences exist between the two sam-
ples, mean estimates of w in this situation can substan-
tially differ from the true value, which can lead to biased
inference. However, figure 5B also shows that the mean
RR estimates based on the best model (w from the CPG
approach if is rejected; otherwise, w from the com-(p)H0

bined test) showed little or no bias in these situations.
These results show that testing prior to combining(p)H0

the data is necessary for valid association analysis.
We next assessed the power of the combined associ-

ation test for testing when population stratification(p)H0

exists between the two samples. We sampled CDSN1243
genotypes for 149 triads and 269 controls from two
distinct strata. We assumed that the first stratum is of
European origin and that the frequency of the A allele
in the stratum is 0.477 (on the basis of the results of the
psoriasis analysis). We assumed that the second stratum
is of Thai origin and that the frequency of the A allele
in the stratum is 0.90 (on the basis of results reported
by Romphruk et al. [2003]). For simplicity, we assumed
the CDSN1243 alleles were in HWE in each stratum.
We then induced stratification by sampling triads and
controls in different proportions from the two strata.
We assumed the controls were sampled in equal pro-
portions but assumed triads were sampled from the first
stratum with probability q. If , then no strat-q p 0.50
ification exists between the triads and unrelated controls.
We therefore performed simulations using toq p 0.50
investigate the type I error rate for testing . To in-(p)H0

vestigate the power to reject under the alternative(p)H0

when stratification exists, we considered additional sim-
ulations that varied the value of q from 0.10 to 0.90.

Figure 6A shows the power to reject at(p)H a p0

under an additive model with the assumption0.05
. When , our combined associationw p 1.0 q p 0.50

analysis has appropriate type I error. Under alternative
models, the power to reject increases steadily with(p)H0

an increase in the magnitude of the difference between
the assumed value of q and the null value of .q p 0.50
We have 180% power to reject when or(p)H q ! 0.230



Figure 3 Power at of the combined association test under the assumption of 149 triads and a variable number of unrelateda p 0.05
controls. Results are based on 10,000 replicates of data simulated using the estimated mating types from the psoriasis study given in table 3,
under an additive model with the assumption .w p 1.5

Figure 4 Power at of the combined association test under the assumption of 269 unrelated controls and a variable number ofa p 0.05
triads. Results are based on 10,000 replicates of data simulated using the estimated mating types from the psoriasis study given in table 3,
under an additive model with the assumption .w p 1.5
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Figure 5 Suitability of combining SNP data from 149 triads and 269 unrelated controls. A, Power of the combined association test to
reject hypothesis : at , under an additive model with the assumption . The dashed line denotes power equal to(p) (p)H w p w a p 0.05 w p 1.00

0.05. B, Mean estimates of (short-dashed line) and w (medium-dashed line) when the two parameters are estimated separately and estimates(p)w

of w (long-dashed line) when the data are combined. Also shown is w (solid line) for the best model (w from the CPG approach if is rejected;(p)H0

otherwise, w from the combined test). Results are based on 10,000 replicates of data. The frequency of the A allele is 0.477 when controls
come from the same population as the triads.

. Figure 6B shows the impact on RR estimatesq 1 0.77
that occurs when population stratification exists be-
tween the triads and unrelated controls. When w and

are estimated as separate parameters under an ad-(p)w

ditive model with the assumption , one can seew p 1.0
that the former parameter is unbiased across all values
of q being considered, which is expected, since this pa-
rameter estimate comes only from the CPG-based com-
ponent of our likelihood (which is robust to stratifica-
tion). However, estimates of can be quite biased(p)w

when the sampling proportions differ between the triad
and control samples. We found a downward bias for

and an upward bias for . Figure 6Bq ! 0.50 q 1 0.50
also shows mean estimates of w if one naively combines
the triad and control data (letting ) when(p)w p w q (

. When stratification exists, mean estimates of w in0.50
this situation can substantially differ from the true value,
which can lead to biased inference. However, figure 6B
shows that the mean RR estimates from the best model
(w from the CPG approach if is rejected; otherwise,(p)H0

w from the combined test) show little or no bias across
different values of q. This again demonstrates that a
valid association analysis of a combined data set requires
prior testing of .(p)H0

Power Comparisons: Triads, Unrelated Controls,
and Unrelated Cases

Figure 7 presents power curves at for oura p 0.05
combined association test, the CPG approach, and the
likelihood-based case-control association test under the
assumption of a sample of 149 complete triads, 135
controls, and 134 cases. Under the null model of w p

, the type I error rates for the three methods appeared1.0
appropriate at . For , the performance ofa p 0.05 w 1 1
the combined association analysis is clearly superior to
the other two tests. These results show that combining
both triad and case-control studies in association anal-
yses can substantially increase the power to identify dis-
ease-influencing variants. We observed the largest power
increases for additive and dominant models, followed
by recessive models. Relative to the next most powerful
test, we found that the power at , when usingw p 1.5
our combined association test, increased from 0.53 to
0.85 under an additive model, from 0.32 to 0.58 under
a dominant model, and from 0.42 to 0.66 under a re-
cessive model. In general, we found that the CPG and
case-control tests had similar power under all three mod-
els, with the CPG test being slightly less powerful than
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Figure 6 Suitability of combining SNP data from 149 triads and 269 unrelated controls under population stratification. Controls are
sampled from two strata in equal proportions. Triads are sampled from stratum 1 with probability q. A, Power of the combined association
test to reject hypothesis : at , under an additive model with the assumption . The dashed line denotes power equal(p) (p)H w p w a p 0.05 w p 1.00

to 0.05. B, Mean estimates of (short-dashed line) and w (medium-dashed line) when the two parameters are estimated separately and(p)w

estimates of w (long-dashed line) when the data are combined. Also shown is w (solid line) for the best model (w from the CPG approach if
is rejected; otherwise, w from the combined test). Results are based on 10,000 replicates of data. corresponds to no stratification(p)H q p 0.500

existing between triads and unrelated controls.

the case-control test under an additive model and mod-
erately more powerful under dominant and recessive
models.

Discussion

The choice of an appropriate control sample for asso-
ciation analysis often requires serious debate. Situations
may arise in which a study might have both triads and
unrelated subjects available for analysis. Rather than
analyze these two samples separately, Nagelkerke et al.
(2004) developed a joint analysis approach that allows
for the combination of SNP data from triads, unrelated
controls, and unrelated cases. Their approach empha-
sized assumptions and approximate analyses restricted
to the multiplicative model that allows the use of stan-
dard logistic-regression software packages for analyses.
Here, we take the viewpoint that the difficult step in
gene discovery is the gathering of genetic data; in data
analysis, the best possible method should be used even
if specialized software is required. Furthermore, we be-
lieve it may be of interest to consider model types other
than multiplicative, such as additive, dominant, or re-

cessive. For this reason, we have developed combined
tests of association that are based on the likelihood of
Nagelkerke et al. (2004) but that do not require as-
sumptions like HWE, random mating, and a multipli-
cative model of allele effect. Analyses based on both real
and simulated data indicate that our combined associ-
ation approach has improved power over statistical
methods that analyze triads and unrelated subjects sep-
arately, even when we assume a fairly general model for
parental mating types in the target population. Our com-
bined approach allows for flexible modeling of allele
effects on disease and missing parental data. We are cur-
rently implementing our combined association analysis
procedures in a Windows-based software package for
public use, which can be downloaded free of charge from
our Web site (see Epstein software Web site).

In addition, we also developed formal statistical tests
to determine when it is appropriate to combine triads,
unrelated controls, and unrelated cases together in our
combined association analysis. Using simulated data
based on the psoriasis data set, we found that substan-
tial bias in RR estimates can arise when allele frequen-
cies differ between the unrelated controls and the pop-
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Figure 7 Power at of combined association test (solid line), CPG approach (long-dashed line), and case-control association testa p 0.05
(short-dashed line), under the assumption of 149 triads, 135 controls, and 134 cases. Results are based on 10,000 replicates of data simulated
using the estimated mating types from the psoriasis study given in table 3.

ulation from which the triads were sampled. We see this
bias because information on from triad parents(w ,w )1 2

comes from a direct comparison of their genotype dis-
tribution with that of unrelated controls (adjusted for
RR with eq. [3]). If the distributions differ between the
two samples, then estimates of obtained using(w ,w )1 2

information from the parents can be grossly inflated or
deflated. Note that only allele-frequency differences be-
tween the two samples are required to induce bias. This
is opposed to bias in case-control studies, which orig-
inates from differences in both allele frequencies and
disease risk. These simulation results suggest that special
care must be taken to ensure that triads and controls
are comparable and highlight the importance of testing
whether the information from these two sources can be
safely combined.

Because Nagelkerke et al. (2004) assumed HWE and
random mating among parents, we determined the ef-
fect of a violation of these assumptions in joint analysis
of data from triads and unrelated subjects. We find that
when these assumptions are violated, biased RR es-
timates and erroneous inference may occur. To illustrate
this, we note that the mating-type frequencies of the
CDSN1243 data in table 3 suggest nonrandom mating.
Therefore, we used these estimated mating types from
the psoriasis study to simulate 149 triads and 269 con-
trols under additive, dominant, and recessive models

with the assumption . We analyzed each dataw p 1.0
set twice: once by using our combined association anal-
ysis (which does not require the assumptions of random
mating and HWE) and once by using a modification of
our approach that explicitly assumes random mating
and HWE. Results are based on 10,000 replicates.

Table 4 provides empirical type I error rates and mean
parameter estimates of w under these two methods. The
table shows that association methods that assume ran-
dom mating and HWE will have either deflated or in-
flated type I error relative to the nominal level, de-
pending on the assumed genetic mechanism. The results
also indicate that estimates of w may be biased for dom-
inant and recessive models. In addition, the empirical
type I error rates for testing whether samples should be
combined may also be either deflated or inflated with
respect to the nominal levels (results not shown), de-
pending on the genetic model. In contrast, our combined
association method has appropriate type I error for test-
ing and yields unbiased estimates of w. Our test also
yields a valid test for testing whether samples can be
safely combined (results not shown) for all genetic mod-
els considered.

Without the explicit assumption of random mating
and HWE, our combined method yields robust tests of
linkage and association when these two conditions are
violated. At the same time, when these two conditions
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Table 4

Type I Error and Bias of Combined Association Tests when Random Mating Does
Not Hold: The CDSN1243 Example with the Assumption w p 1.0

TEST, ERROR, AND BIAS

MODEL

Additive Dominant Recessive

Association test assuming random mating:
Type I error, a p 0.05 .041 .084 .092
Type I error, a p 0.01 .008 .019 .027

Mean value of w 1.012 .909 1.145
Association test not assuming random mating:

Type I error, a p 0.05 .050 .051 .050
Type I error, a p 0.01 .010 .010 .010

Mean value of w 1.017 1.022 1.015

NOTE.—Results are based on 10,000 replicates. Simulated data are based on mating-
type frequencies from CDSN1243 analyses in table 3.

actually hold, we find our method has similar power to
a method that explicitly assumes these conditions. To
demonstrate this, we simulated 149 triads and 269 con-
trols under a model that assumed random mating and
HWE. We let the frequency of A be 0.477 (similar to
the frequency of the susceptibility allele in the psoriasis
sample) and simulated 5,000 replicate data sets under
additive, dominant, and recessive models with the as-
sumption . Under an additive model, the powerw p 1.5
of our combined test (0.73 at ) was equivalenta p 0.05
to the power of an analogous test that assumed random
mating and HWE. Our test was only slightly less pow-
erful under both dominant (power of our combined test,
0.44; power with assumption of random mating and
HWE, 0.48) and recessive (power of our combined test,
0.46; power with assumption of random mating and
HWE, 0.49) models. We therefore conclude that the
robustness of our method does not come at the expense
of a substantial power loss under the ideal situation of
HWE and random mating.

A useful extension of our combined association test
would be allowance for genotype data from additional
affected and unaffected siblings within a family. The
accommodation of additional affected siblings is chal-
lenging, since a likelihood formulation is difficult if the
locus under study is a marker locus rather than a sus-
ceptibility locus (Tu et al. 2000; Whittemore and Tu
2000). Given a family with N affected offspring, we
instead suggest entering the likelihood of each of the N
possible triads into the analysis separately (as if the data
were independent). Because the correlation between af-
fected siblings is not accounted for, the resulting analysis
corresponds to a composite likelihood (Lindsay 1988),
which can be used for inference as long as robust (sand-
wich) tests and estimators of variance are applied. For
this reason, note that the LR statistic and AIC are not
available, and hence all inference must be based on ei-
ther robust Wald tests or generalized score tests (Boos
1992). A similar approach using generalized estimating

equations has been proposed by H. Putter, J. J. Hou-
wing-Duistermaat, and N. J. D. Nagelkerke (unpub-
lished data) using the same approach advocated by Na-
gelkerke et al. (2004). To allow for unaffected siblings
such as those seen in discordant sib pair study designs,
we make a rare-disease assumption such that we can
multiply the likelihood in equation (1) by a factor cor-
responding to the likelihood for conditional logistic re-
gression of matched-pair data. Data from multiplex sib-
ships can be included in a similar way, although a
variance adjustment is required to account for the cor-
relation between sibs (Siegmund et al. 2000). Finally,
we note that, if no triads are available, then combining
unrelated controls with data from sibships in the man-
ner described above does not result in any gains in ef-
ficiency, whereas combining data from sibships with
case and control data is more like a meta-analysis than
the combined approach described here.

Although we have focused on combined association
analysis of single SNPs, we intend to extend our ap-
proach to allow for the analysis of haplotypes. Since
haplotypes combine LD information from multiple
markers simultaneously, we feel that such an approach
could be more powerful than our current approach.
Direct extension of the likelihood-based analysis de-
scribed here, to accommodate haplotypes, is not trivial,
because of the increase in the number of parameters
needed to model the haplotypes. In particular, fitting a
saturated model of parental haplotype pairs is not pos-
sible, since this distribution is not identifiable from un-
phased genotype data. Alternatively, we could reduce
the number of mating-type parameters by assuming
HWE and random mating among parents. However, as
we have already showed for the psoriasis data set, such
assumptions may not be valid in practice and may lead
to erroneous inference. Therefore, we intend to develop
a semiparametric procedure for estimating the haplo-
type RRs, as described by A. S. Allen, G. A. Satten, and
A. A. Tsiatis (unpublished data).
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Appendix

EM Algorithm for Maximizing Likelihood Equation (6)
in the Presence of Missing Parental Data

Assuming that the genotype data are complete, we can
use L in equation (5) to estimate the complete set of
unknown parameters, which we denote by v p { , ,w w1 2

, , , , , ,…, }. However, if any parental ge-(p) (p) (c) (c)w w w w m m m1 2 1 2 1 2 6

notype data are missing, then we choose to use an EM
algorithm (Dempster et al. 1977) similar to the one de-
scribed in Weinberg (1999) for estimation. Proper im-
plementation of the EM algorithm begins by construc-
tion of the log likelihood of L in equation (6) under the
assumption of complete data. We let denote this com-lc
plete log likelihood.

The EM algorithm proceeds iteratively, with each it-
eration comprising an E step and an M step. The E step
requires the calculation of the expected value of con-lc
ditional on current estimates of v, as well as the observed
triad genotype and phenotype data. The subsequent M
step then maximizes this expected value of to updatelc
v. The EM algorithm then cycles between the E and M
steps until the convergence of v. Convergence is declared
when the sum of the squares of the parameter estimates
at successive iterations is less than a small positive num-
ber, such as 1# 10�12.

To construct , we let denote the number of triadsl Ic rst

with unordered parental mating type (r,s) (r,s p 0,1,2;
and offspring genotype t ( ) and letr � s) t p 0,1,2 prst

denote the frequency of this genotype combination in
the triads. We also let denote the number of unrelatedJw

controls with genotype w (w p 0,1,2) and let denotegw

the frequency of this genotype in the unrelated control
sample. We let denote the number of unrelated casesKw

with genotype w and let denote the frequency of thishw

genotype in the unrelated case sample. It is straightfor-
ward to show that , , and are functions of dif-p g hrst w w

ferent elements of v. Using this notation, we construct
the complete log likelihood:

2 r 2 2

l p I log {p } � J log {g }��� �c rst rst w w
rp0 sp0 tp0 wp0

2

� K log {h } . (A1)� w w
wp0

At the start of iteration , we have estimates ofk � 1
, , and from the previous kth iteration. We take(k) (k) (k)p g hrst w w

the expectation of by using , , , and the ob-(k) (k) (k)l p g hc rst w w

served triad data. The observed data consist of (1) com-
plete triads for which both the parental mating type and
offspring genotype are observed, (2) dyads for which the
parental mating type is partially missing and the off-
spring genotype is observed, and (3) monads for which
the parental mating type is completely missing and the
offspring genotype is observed. Let denote the totalCrst

observed number of complete triads with observed pa-
rental mating type and offspring genotype t. Let(r,s)

denote the total observed number of dyads with ob-Drt

served parental genotype r and offspring genotype t. Fi-
nally, let denote the total observed number of monadsMt

with offspring genotype t.
Define as the expected number of triads with(k�1)Yrst

parental mating type ( ) and offspring genotype t atr,s
iteration . Using the observed data, we can evaluatek � 1

for :(k�1)Y r ( srst

(k)prst(k�1)Y p C � Drst rst rt r�1 2
(k) (k) (k)� p � 2p � � p∗ ∗rs t rrt s rt∗ ∗s p0 s pr�1

(k)prst�Dst s�1 2
(k) (k) (k)� p � 2p � � p∗ ∗sr t sst r st∗ ∗r p0 r ps�1

(k)prst�M ∗t 2 r
(k)� � p ∗ ∗r s t∗ ∗r p0 s p0

and for :r p s

(k)2prrt(k�1)Y p C � Drrt rrt rt r�1 2
(k) (k) (k)� p � 2p � � p∗ ∗rs t rrt s rt∗ ∗s p0 s pr�1

(k)prst�M .∗t 2 r
(k)� � p ∗ ∗r s t∗ ∗r p0 s p0

The E step of the EM algorithm involves substituting
the value of for in equation (A1) for all r, s,(k�1)Y Irst rst

and t. The M step then maximizes the expected value
of with respect to v by use of a quasi-Newton algorithmlc
to obtain , which can then be used to calculate(k�1)v

, , and . The EM algorithm then proceeds(k�1) (k�1) (k�1)p g hrst w w

to the start of iteration , and the process is repeatedk � 2
until convergence.
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